If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2=9t+14=0
We move all terms to the left:
t^2-(9t+14)=0
We get rid of parentheses
t^2-9t-14=0
a = 1; b = -9; c = -14;
Δ = b2-4ac
Δ = -92-4·1·(-14)
Δ = 137
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{137}}{2*1}=\frac{9-\sqrt{137}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{137}}{2*1}=\frac{9+\sqrt{137}}{2} $
| 8/5(x+5)=10 | | -x-51=4x+79 | | 2x+20=3(x+4) | | 15+2r=-9(4r-5) | | -93+11x=59+3x | | 4(x-3)=-x+8 | | -11=4x-14 | | x=12x-150 | | -5t+12t=0 | | 2(1+3x)=11-3x | | 7m+10=4m/1 | | 2(3x+7)=2(2+1x)+2x | | 10x-27=180 | | 8v+55=268 | | x2-10x=35 | | -5=x÷6+4 | | (2x+29)+(10x=27)=90 | | 2x+29=110 | | 20x=420 | | 3700=800(1.5)+b | | 2x^2=96-20x | | 2x^2=96-20 | | 6000=1000*1.05^x | | 24+b=28 | | 18=3y+6y | | 10-2x=1/10,000 | | 5x+9-3x=18+13 | | 5/3x=5/10 | | 49=9+4x | | 14+f=22 | | 6t-2+5=5t-3 | | 2q+5=100 |